3.6.83 \(\int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [583]

3.6.83.1 Optimal result
3.6.83.2 Mathematica [A] (verified)
3.6.83.3 Rubi [A] (verified)
3.6.83.4 Maple [A] (verified)
3.6.83.5 Fricas [C] (verification not implemented)
3.6.83.6 Sympy [F]
3.6.83.7 Maxima [F]
3.6.83.8 Giac [F]
3.6.83.9 Mupad [F(-1)]

3.6.83.1 Optimal result

Integrand size = 21, antiderivative size = 101 \[ \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

output
2/3*a*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1 
/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d 
*x+c)^(1/2)/d+2/3*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipt 
icF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.6.83.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.75 \[ \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (6 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \left (2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sin (2 (c+d x))\right )\right )}{3 d} \]

input
Integrate[(a + b*Sec[c + d*x])/Sec[c + d*x]^(3/2),x]
 
output
(Sqrt[Sec[c + d*x]]*(6*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + a* 
(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + Sin[2*(c + d*x)])))/(3*d 
)
 
3.6.83.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 4274, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4274

\(\displaystyle a \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx+b \int \frac {1}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+b \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4256

\(\displaystyle a \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+b \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+b \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4258

\(\displaystyle a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3119

\(\displaystyle a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

\(\Big \downarrow \) 3120

\(\displaystyle a \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\)

input
Int[(a + b*Sec[c + d*x])/Sec[c + d*x]^(3/2),x]
 
output
(2*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + 
a*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3* 
d) + (2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]))
 

3.6.83.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 
3.6.83.4 Maple [A] (verified)

Time = 12.69 (sec) , antiderivative size = 228, normalized size of antiderivative = 2.26

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +\sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a -3 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b \right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(228\)
parts \(-\frac {2 a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 b \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(314\)

input
int((a+b*sec(d*x+c))/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*cos(1/2*d* 
x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a-2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2* 
a+(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*a-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b)/(-2*sin(1/2*d 
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+ 
1/2*c)^2-1)^(1/2)/d
 
3.6.83.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.24 \[ \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, d} \]

input
integrate((a+b*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")
 
output
1/3*(2*a*sqrt(cos(d*x + c))*sin(d*x + c) - I*sqrt(2)*a*weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*a*weierstrassPInverse(- 
4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*b*weierstrassZeta(-4, 0 
, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2) 
*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin( 
d*x + c))))/d
 
3.6.83.6 Sympy [F]

\[ \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {a + b \sec {\left (c + d x \right )}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*sec(d*x+c))/sec(d*x+c)**(3/2),x)
 
output
Integral((a + b*sec(c + d*x))/sec(c + d*x)**(3/2), x)
 
3.6.83.7 Maxima [F]

\[ \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {b \sec \left (d x + c\right ) + a}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")
 
output
integrate((b*sec(d*x + c) + a)/sec(d*x + c)^(3/2), x)
 
3.6.83.8 Giac [F]

\[ \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {b \sec \left (d x + c\right ) + a}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")
 
output
integrate((b*sec(d*x + c) + a)/sec(d*x + c)^(3/2), x)
 
3.6.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {a+\frac {b}{\cos \left (c+d\,x\right )}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int((a + b/cos(c + d*x))/(1/cos(c + d*x))^(3/2),x)
 
output
int((a + b/cos(c + d*x))/(1/cos(c + d*x))^(3/2), x)